Efficient Distributed Reinforcement Learning Through Agreement

نویسندگان

  • Paulina Varshavskaya
  • Leslie Pack Kaelbling
  • Daniela Rus
چکیده

Distributed robotic systems can benefit from automatic controller design and online adaptation by reinforcement learning (RL), but often suffer from the limitations of partial observability. In this paper, we address the twin problems of limited local experience and locally observed but not necessarily telling reward signals encountered in such systems. We combine direct search in policy space with an agreement algorithm to efficiently exchange local rewards and experience among agents. We demonstrate improved learning ability on the locomotion problem for self-reconfiguring modular robots in simulation, and show that a fully distributed implementation can learn good policies just as fast as the centralized implementation. Our results suggest that prior work on centralized RL algorithms for modular robots may be made effective in practice through the application of agreement algorithms. This approach could be fruitful in many cooperative situations, whenever robots need to learn similar behaviors, but have access only to local information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Survey of effective factors on learning motivation of clinical students and suggesting the appropriate methods for reinforcement the learning motivation from the viewpoints of nursing and midwifery faculty, Tabriz University of Medical Sciences 2002.

Introduction. Motives are the powerful force in process of education– learning, so that the richest and best training plans and structured education are not effective if the lack of motivation existed. In spite of the fact that the success of teacher depends on the learning motivation of students, then it is necessary for teachers to know the effective methods for motivating the students and t...

متن کامل

Reinforcement Learning-based Spectrum Sharing for Cognitive Radio

TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 Abstract This thesis investigates how distributed reinforcement learning-based resource assignment algorithms can be used to improve the performance of a cognitive radio system. Decision making in most wireless systems today, including most cognitive radio systems in development, depends purely on instantaneous meas...

متن کامل

Efficient Exploration for Reinforcement Learning Based Distributed Spectrum Sharing in Cognitive Radio System

In this paper, we investigate how distributed reinforcement learning-based resource assignment algorithms can be used to improve the performance of a cognitive radio system. Today’s decision making in most wireless systems include cognitive radio systems in development, depends purely on instantaneous measurement. Two system architectures have been investigated in this paper. A point-to-point a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008